Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CuInS2 nanoparticles: Microwave-assisted synthesis, characterization, and photovoltaic measurements

Identifieur interne : 000F75 ( Main/Repository ); précédent : 000F74; suivant : 000F76

CuInS2 nanoparticles: Microwave-assisted synthesis, characterization, and photovoltaic measurements

Auteurs : RBID : Pascal:13-0151238

Descripteurs français

English descriptors

Abstract

For the first time, (1,8-diamino-3,6-dioxaoctan)copper(II) sulfate, [Cu(DADO)]SO4, and bis(propylenediamine)copper(II) sulfate, [Cu(pn)2]SO4, complexes as copper precursors have been used to prepare CuInS2 (CIS) nanoparticles in the presence of microwave irradiation. InCl3 anhydrous, thioacetamide (TAA), and propylene glycol were used as indium source, sulfur precursor, and solvent, respectively. Additionally, sodium dodecyl sulfate (SDS) was used as a capping agent. In this method, microwave irradiation created the activation energy for dissociating the precursors and led to the formation of CuInS2 nanoparticles. The effect of preparation parameters such as microwave power, irradiation time, and type of copper precursor on the particle size of the products was studied. To fabricate a solar cell, CdS film was directly deposited on top of the CIS film through the chemical bath deposition method. The as-deposited CdS/CuInS2 films were used for the photovoltaic measurements. According to I-V curves, it was found that the CIS nanoparticles synthesized by [Cu(DADO)]SO4 complex as precursor was better for solar cell applications.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0151238

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">CuInS
<sub>2</sub>
nanoparticles: Microwave-assisted synthesis, characterization, and photovoltaic measurements</title>
<author>
<name sortKey="Mostafa Hosseinpour Mashkani, S" uniqKey="Mostafa Hosseinpour Mashkani S">S. Mostafa Hosseinpour-Mashkani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Nanoscience and Technology, IST, Jawaharlal Nehru Technological University Hyderabad</s1>
<s2>Hyderabad 500 085, Andhra Pradesh</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Hyderabad 500 085, Andhra Pradesh</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Salavati Niasari, Masoud" uniqKey="Salavati Niasari M">Masoud Salavati-Niasari</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167</s1>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of NanoScience and NanoTechnology, University of Kashan, Kashan, P. O. Box. 87317-51167</s1>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Institute of NanoScience and NanoTechnology, University of Kashan, Kashan, P. O. Box. 87317-51167</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mohandes, Fatemeh" uniqKey="Mohandes F">Fatemeh Mohandes</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167</s1>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Venkateswara Rao, K" uniqKey="Venkateswara Rao K">K. Venkateswara-Rao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Nanoscience and Technology, IST, Jawaharlal Nehru Technological University Hyderabad</s1>
<s2>Hyderabad 500 085, Andhra Pradesh</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Hyderabad 500 085, Andhra Pradesh</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0151238</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0151238 INIST</idno>
<idno type="RBID">Pascal:13-0151238</idno>
<idno type="wicri:Area/Main/Corpus">000F59</idno>
<idno type="wicri:Area/Main/Repository">000F75</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1369-8001</idno>
<title level="j" type="abbreviated">Mater. sci. semicond. process.</title>
<title level="j" type="main">Materials science in semiconductor processing</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation energy</term>
<term>Cadmium sulfide</term>
<term>Chemical bath deposition</term>
<term>Copper</term>
<term>Copper sulfate</term>
<term>Copper sulfide</term>
<term>IV characteristic</term>
<term>Indium</term>
<term>Indium sulfide</term>
<term>Microwave irradiation</term>
<term>Microwave measurement</term>
<term>Nanoparticles</term>
<term>Particle size</term>
<term>Photovoltaic effects</term>
<term>Propylene glycol</term>
<term>Semiconductor materials</term>
<term>Sodium sulfate</term>
<term>Solar cells</term>
<term>Sulfur</term>
<term>Ternary compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mesure hyperfréquence</term>
<term>Effet photovoltaïque</term>
<term>Sulfate de cuivre</term>
<term>Irradiation hyperfréquence</term>
<term>Energie activation</term>
<term>Dimension particule</term>
<term>Cellule solaire</term>
<term>Dépôt bain chimique</term>
<term>Caractéristique courant tension</term>
<term>Composé ternaire</term>
<term>Sulfure de cuivre</term>
<term>Sulfure d'indium</term>
<term>Nanoparticule</term>
<term>Cuivre</term>
<term>Indium</term>
<term>Soufre</term>
<term>Sulfate de sodium</term>
<term>Sulfure de cadmium</term>
<term>Semiconducteur</term>
<term>8460J</term>
<term>CuInS2</term>
<term>CdS</term>
<term>Propane-1,2-diol</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
<term>Soufre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For the first time, (1,8-diamino-3,6-dioxaoctan)copper(II) sulfate, [Cu(DADO)]SO
<sub>4</sub>
, and bis(propylenediamine)copper(II) sulfate, [Cu(pn)
<sub>2</sub>
]SO
<sub>4</sub>
, complexes as copper precursors have been used to prepare CuInS
<sub>2</sub>
(CIS) nanoparticles in the presence of microwave irradiation. InCl
<sub>3</sub>
anhydrous, thioacetamide (TAA), and propylene glycol were used as indium source, sulfur precursor, and solvent, respectively. Additionally, sodium dodecyl sulfate (SDS) was used as a capping agent. In this method, microwave irradiation created the activation energy for dissociating the precursors and led to the formation of CuInS
<sub>2</sub>
nanoparticles. The effect of preparation parameters such as microwave power, irradiation time, and type of copper precursor on the particle size of the products was studied. To fabricate a solar cell, CdS film was directly deposited on top of the CIS film through the chemical bath deposition method. The as-deposited CdS/CuInS
<sub>2</sub>
films were used for the photovoltaic measurements. According to I-V curves, it was found that the CIS nanoparticles synthesized by [Cu(DADO)]SO
<sub>4</sub>
complex as precursor was better for solar cell applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1369-8001</s0>
</fA01>
<fA03 i2="1">
<s0>Mater. sci. semicond. process.</s0>
</fA03>
<fA05>
<s2>16</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>CuInS
<sub>2</sub>
nanoparticles: Microwave-assisted synthesis, characterization, and photovoltaic measurements</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MOSTAFA HOSSEINPOUR-MASHKANI (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SALAVATI-NIASARI (Masoud)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MOHANDES (Fatemeh)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VENKATESWARA-RAO (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Center for Nanoscience and Technology, IST, Jawaharlal Nehru Technological University Hyderabad</s1>
<s2>Hyderabad 500 085, Andhra Pradesh</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167</s1>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of NanoScience and NanoTechnology, University of Kashan, Kashan, P. O. Box. 87317-51167</s1>
<s3>IRN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>390-402</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888A</s2>
<s5>354000502473530260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>60 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0151238</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Materials science in semiconductor processing</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>For the first time, (1,8-diamino-3,6-dioxaoctan)copper(II) sulfate, [Cu(DADO)]SO
<sub>4</sub>
, and bis(propylenediamine)copper(II) sulfate, [Cu(pn)
<sub>2</sub>
]SO
<sub>4</sub>
, complexes as copper precursors have been used to prepare CuInS
<sub>2</sub>
(CIS) nanoparticles in the presence of microwave irradiation. InCl
<sub>3</sub>
anhydrous, thioacetamide (TAA), and propylene glycol were used as indium source, sulfur precursor, and solvent, respectively. Additionally, sodium dodecyl sulfate (SDS) was used as a capping agent. In this method, microwave irradiation created the activation energy for dissociating the precursors and led to the formation of CuInS
<sub>2</sub>
nanoparticles. The effect of preparation parameters such as microwave power, irradiation time, and type of copper precursor on the particle size of the products was studied. To fabricate a solar cell, CdS film was directly deposited on top of the CIS film through the chemical bath deposition method. The as-deposited CdS/CuInS
<sub>2</sub>
films were used for the photovoltaic measurements. According to I-V curves, it was found that the CIS nanoparticles synthesized by [Cu(DADO)]SO
<sub>4</sub>
complex as precursor was better for solar cell applications.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07W</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15L</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Mesure hyperfréquence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Microwave measurement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Effet photovoltaïque</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Photovoltaic effects</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Sulfate de cuivre</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Copper sulfate</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Cobre sulfato</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Irradiation hyperfréquence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Microwave irradiation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Irradiación hiperfrecuencia</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Energie activation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Activation energy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Dimension particule</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Particle size</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dépôt bain chimique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Chemical bath deposition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Depósito baño químico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>IV characteristic</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Soufre</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Sulfur</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Sulfate de sodium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Sodium sulfate</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Sodio sulfato</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>CuInS2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Propane-1,2-diol</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Propylene glycol</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Chalcopyrite</s0>
<s5>10</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Chalcopyrite</s0>
<s5>10</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>11</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>11</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Composé II-VI</s0>
<s5>12</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>II-VI compound</s0>
<s5>12</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Compuesto II-VI</s0>
<s5>12</s5>
</fC07>
<fN21>
<s1>125</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F75 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000F75 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0151238
   |texte=   CuInS2 nanoparticles: Microwave-assisted synthesis, characterization, and photovoltaic measurements
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024